
Improved recognition of aged Kannada documents
by effective segmentation of merged characters

Madhavaraj A, A G Ramakrishnan, Shiva Kumar H R

MILE Laboratory, Dept. of Electrical Engineering
Indian Institute of Science

Bangalore, India
madhavarajaa, agrkrish, shivahr@gmail.com

Nagaraj Bhat
Department of Electronics and Communication

Birla Institute of Technology
Mesra, Ranchi

nagbhat25@gmail.com

Abstract—In optical character recognition of very old
books, the recognition accuracy drops mainly due to the
merging or breaking of characters. In this paper, we propose
the first algorithm to segment merged Kannada characters by
using a hypothesis to select the positions to be cut. This method
searches for the best possible positions to segment, by taking
into account the support vector machine classifier’s recognition
score and the validity of the aspect ratio (width to height ratio)
of the segments between every pair of cut positions. The
hypothesis to select the cut position is based on the fact that a
concave surface exists above and below the touching portion.
These concave surfaces are noted down by tracing the valleys
in the top contour of the image and similarly doing it for the
image rotated upside-down. The cut positions are then derived
as closely matching valleys of the original and the rotated
images. Our proposed segmentation algorithm works well for
different font styles, shapes and sizes better than the existing
vertical projection profile based segmentation. The proposed
algorithm has been tested on 1125 different word images, each
containing multiple merged characters, from an old Kannada
book and 89.6% correct segmentation is achieved and the
character recognition accuracy of merged words is 91.2%. A
few points of merge are still missed due to the absence of a
matched valley due to the specific shapes of the particular
characters meeting at the merges.

Keywords— optical character recognition; aspect ratio;
merged character segmentation; recognition based segmentation;
support vector machine; recognition score; OCR; Kannada;
matched valleys; segmentation path; vertical projection profile.

I. INTRODUCTION
Optical character recognizers (OCRs) with good

performance on aged printed documents are still not
available for many Indian scripts [1]. The Medical
Intelligence and Language Engineering (MILE) Laboratory
at the Department of Electrical Engineering has been
working on Tamil [2-4] and Kannada [5-6] OCRs for some
time and in the recent past, about 200 Tamil books have
been converted to Braille books using the Tamil OCR
developed here, with a good graphics user interface known
as PrintToBraille tool [7], which also supports Telugu now.
Bilingual OCRs are also being developed to handle
Devanagari or Roman script, along with Tamil [8-10] or
Kannada [11] script, using script recognition at the word
level using Gabor features [12-13].

Incorrect segmentation of merged characters is a major
cause of poor performance of OCRs on old documents.
There exist three types of merges as defined by [14], namely
linear, nonlinear and overlapped. Linear merge is one in
which the two characters could be separated by a linear
function. A non-linear type is one in which the merged
symbols can only be separated by a non-linear function. If
the merged components cannot be separated either way,
then it is called an overlapped merge. A wide range of
techniques have been proposed to segment and recognize
the merged characters in Chinese and Roman scripts, and
can be basically classified as recognition-free and
recognition-based approaches. In the former approach, a set
of rules are used to segment the characters without using a
recognizer, whereas in the latter approach, the likelihood
scores for the segmented characters given by the recognizer
are used to validate the segmentation.

There are many recognition based approaches to
segment merged Roman characters from printed documents.
Bayer et al. proposed a statistical cut classifier and a search
algorithm for selecting the merge position [15]. Although
this method works for different font styles, the search space
can be very large and extremely time consuming if the width
of the merged image is large. Zhang et al. [16] proposed a
method to segment merged symbols in mathematical
expressions by extracting concave points in the image by
contour analysis, and then using them to construct
segmentation paths which are then verified by a recognizer.
Neural network has also been used to segment merged
characters by using the shortest path algorithm seeking
minimal penalty cuts [17]. Vertical projection profile (VPP)
of the merged image has been used to find optimal cut
positions along with the classification score for Chinese
characters [18]. Similar technique by using VPP has been
tried in [19] for segmenting merged Roman characters. In
[20], the authors segment the merged Gurmukhi characters
by first vertically cutting exactly in the middle of the
merged pair and then finding the final cut position by
choosing a column within an optimizing window and
validating the cut position with the information from the
recognizer and the aspect ratios of the split components. In
[21-22], attention-feedback segmentation has been proposed
for segmenting both merged and split characters from online
handwritten Tamil words.

There are also many recognition-free segmentation
approaches in the literature, most of which are designed for
handwritten characters rather than for the printed ones.

We record our immense thanks to Technology Development for Indian
Languages (TDIL), Department of Information Technology, Government of
India for funding this work under the OCR consortium project.

Chang et al. [23] proposed a technique to construct a convex
hull around the merged character and to use the typographic
attributes derived from the concave residual in the hull
along with the shortest path algorithm to properly segment
printed merged characters without employing a classifier. In
[24], the skeleton of the image was used along with self-
organizing map networks to decide the optimal
segmentation path for merged handwritten digits. Dropfall
algorithm was proposed by Congedo et al. [25] to segment
merges in handwritten numerals. This algorithm simulates
the flow of a hypothetical drop from top to bottom over the
contour of the merged image and to seep through the
merged portion to split the characters.

In this paper, we report a maiden attempt to segment
merged Kannada characters in printed documents. This
recognition based method picks the lines joining matching
valleys from the top and bottom contours of the image as the
likely segmentation paths. The aspect ratio of the segmented
characters and likelihood scores of support vector machine
(SVM) classifier are used to choose the best possible cut
paths. Our method can handle images with multiple merges
and fonts with different sizes and styles (bold/italic). Our
algorithm has proved to be more efficient in segmenting the
merged characters when evaluated against the VPP based
initial choice of segmentation paths.

The paper is organized as follows: Section II gives a brief
overview about the Kannada script and the baseline
recognizer used in our experimentation. Section III describes
the matching valleys based algorithm to generate the
candidate segmentation paths. In section IV, we describe the
complete recognition based segmentation procedure to select
the best set of segmentation paths among all possible
candidates. Experimental results are presented and discussed
in section V. Conclusion and proposed future work form
section VI.

II. BASELINE KANNADA CHARACTER RECOGNIZER
The Kannada script has 34 consonants and 14 vowels

and 10 numerals and they combine with each other to form
consonant-consonant and consonant-vowel characters
forming a total of 309 unique classes for the entire script. In
consonant clusters, special graphemes called ottu occur
below the baseline. For more details on Kannada
graphemes, see [26-27].

A. Properties of Kannada script
The template is used to format your paper and style the

text. All margins, column widths, line spaces, and text fonts
are prescribed; please do not alter them. You may note
peculiarities. For example, the head margin in this template
measures proportionately more than is customary. This
measurement and others are deliberate, using specifications
that anticipate your paper as one part of the entire
proceedings, and not as an independent document. Please do
not revise any of the current designations.

B. Character Recognizer
The character recognizer assigns a particular label to each

segmented component. This step is the heart of any OCR
system and involves two principal stages, namely (i) feature

extraction and (ii) classification. During feature extraction,
the relevant discriminative information, named the feature
vector, is extracted from the raw character image. In the
classification stage, the extracted feature vector is given to a
classifier which outputs the label to which the vector
belongs, based on a pre-trained model. Common
discriminative classifiers used in OCR are the k-nearest
neighbor, artificial neural network (ANN) and SVM. The
accuracy of the OCR system mainly depends on the efficacy
of the recognizer. Further, since the proposed method for
segmenting merged characters is recognition based, character
recognition is a key process and must be accurate and faster.
Since the characters in Kannada are complex and contain
many similar-looking pairs, choosing the type of
discriminative feature vector is critically important.

1) Feature extraction: We have used a combination of
correlation and discrete wavelet transform feature. First, the
character image is resized to 32x32. Then, we compute the
one sided auto-correlation for each row of the image and
similarly for each column of the image. Then, we compute
the DWT of the image using Haar wavelets. Finally,
elements of the row-wise correlation matrix, column-wise
correlation matrix and the wavelet transform matrix (each of
size 32x32) are concatenated to get the feature vector with a
total dimension of 3072 (3x32x32 = 3072). In our
experiments, the above set of features have proved to be
more discriminative than the features obtained from
template, discrete cosine transform (DCT), Karhunen-Loeve
transform projections and block based DCT.

2) Classification: In addition to choosing appropriate
features, it is important to choose a suitable classifier to
realize a reliable character recognizer. We have used SVM
with linear kernel as the classifier to train and test the
feature vectors in our experiments. Separate SVM models
are trained with feature vectors obtained from 64,811
samples (approx. 210 samples per class) for Kannada
character classes. Also, statistics about the aspect ratios
(width to height ratio) of the samples of each of the classes
are calculated and are used for the purpose of verification
during segmentation.

III. ALGORITHM TO GENERATE SEGMENTATION
PATHS

The merge segmentation algorithms available in the

literature were primarily designed for Roman characters and
numerals, where the structure and shape of the characters are
simple. However, in Kannada, the symbols have complex
structures and the number of classes are also much higher
that these algorithms cannot be applied, since almost all of
these algorithms sometimes cut the valid Kannada
characters at a position, where the components to the right
and left of the cut might also be valid symbols but they are
not actually merged. This phenomenon is illustrated in
Table I. However, by exploiting the nature of the shape of
the characters of Kannada (as almost every character has
curved outer surface), we have derived an algorithm to
efficiently segment the merged characters, which is
described in the following sections.

TABLE I. EXAMPLES ILLUSTRATING HOW EXISTING SEGMENTATION
TECHNIQUES IN THE LITERATURE MAY INCORRECTLY SPLIT SOME

LEGITIMATE CHARACTERS TO RESULT IN OTHERWISE VALID KANNADA
COMPONENTS.

A. Detection of merged characters:

The first and foremost step is to decide whether an
initially segmented component contains any merge or not.
To do so, we have used the well known aspect ratio check.
Once a segmented component is recognized, we decide it is
merged if the aspect ratio of the character image is greater
than the maximum aspect ratio of the recognized class. If
and only if a segmented component is detected as merged, it
goes further to the merge-segmentation algorithm.

B. Method 1: Generation of segmentation paths using
valleys:
 This is our proposed algorithm to construct possible

linear segmentation paths in the merged image by matching
the valleys obtained from the top and bottom contours of the
image. The flow of the algorithm is discussed below.

1) Step 1: From the merged image, a list of valleys is
obtained (Top valleys) using the algorithm given in Table II.

2) Step 2: The merged image is rotated by 180o and the
list of valleys (bottom valleys) is once again obtained for
this rotated image, using the same algorithm in Table II.

3) Step 3: This is the step that actually generates the
segmentation paths. Each candidate segmentation path is the
line joining a pair of top and bottom valleys. A pair is
formed by taking one distinct point each from the list of top
and bottom valleys. Further, priority is given for the pair of
points which are minimally separated horizontally, and any
pair whose horizontal distance is more than 5 pixels is not
considered. Figure 1 describes the generation of candidate
segmentation paths for a sample Kannada image. The top
and bottom valleys are shown in red and black colors,
respectively, and the segmentation paths are shown in
yellow.

C. Method 2: Generation of segmentation paths using
vertical projection profile:
This method of generating the segmentation path is

similar to the one described in [19]. Here, vertical
segmentation paths are derived based on the vertical
projection profile (VPP) of the merged image as discussed
below.

TABLE II. ALGORITHM TO FIND VALLEYS

1. Initialize n=1 and create an empty list for storing the
valley points.

2. Search for the first ON pixel in the nth column of the
image, vertically from the top.

3. Note down the point. The pixel immediately above that
point is called the Hit Point for that column.

4. If a valid hit point is not found, increment ‘n’ and go to
Step 2; else from the hit point, traverse through the
surface of the character and note down the lowest point
as the valley point for the nth column.

5. If either the horizontal or the vertical distance between
the hit point and the valley point is less than 2 pixels
and if that point already exists in the list, then ignore
that valley as a noisy local valley; else store the location
of the point in the list of valley points. Increment ‘n’
and if ‘n’ exceeds the number of columns in the image,
go to Step 6; else go to Step 2.

6. Return the final unique list of the valley points in the
ascending order of their column numbers.

1) Step 1: Obtain the VPP of the given image and its

first order derivative (VPP’) and the second derivative
(VPP”).

2) Step 2: Note down the columns corresponding to
minima in VPP, where VPP’ and VPP” values at that
column are zero and positive, respectively. Now, the
selected column numbers are stored in a list, while ensuring
that the horizontal distance between any two chosen
columns is greater than 10 pixels (since no character has a
width less than 10 pixels in Kannada for normal font sizes at
300 dpi scanning resolution).

Figure 1. Valleys and candidate segmentation paths for a sample

Kannada merged word image. The top and bottom valleys are shown in
red and black color, respectively and the segmentation paths are shown

in yellow.

This gives the list of indices of all the columns in the image,
where a merge has been suspected.

3) Step 3: Make a vertical cut on the suspected columns
in the merged image. Figure 2 shows a totally merged word
image and the candidate columns chosen to be cut based on
VPP.

IV. RECOGNITION BASED SEGMENTATION
This algorithm is the core of the segmentation process.

Once possible segmentation paths are available, the
objective is to choose the best set of segments out of all
combinations of the segments, which involves the two steps
described below.

A. Initial segmentation and recognition
Given the candidate segmentation paths, the components

lying between any pair of segmentation paths are possible
segments. If there are ‘N’ segmentation paths, the number of
such segments to be considered is (N2+3)/2. Thus, the
number of different segments to be considered for the image
shown in Fig.1 with 6 segmentation paths is 27. Each such
segment is classified using an SVM classifier and its
likelihood value is noted. If the aspect ratio of the segment
doesn’t lie within the minimum and maximum aspect ratio
limits of the recognized label, then its likelihood is set to a
minimum value (in our experiment, this value is -100).

B. Optimal selection of segments
Once initial segmentation and recognition is completed,

the optimal paths for segmentation need to be selected. The
average likelihood of all possible sequences of segments
(from the left most to the right most column) are calculated
and based on the maximum score, the final optimal
sequence of segments segments is selected. The number of
possible segmentation

Figure 2. Candidate segmentation columns using VPP method for a

sample Kannada merged word image.

sequences which can be derived from ‘K’ segmentation

paths is
12 1K− − . Fig. 3 shows a sample merged Kannada

character image with 3 possible segment sequences and
maximum likelihood score based selection of optimal set of
segments.

V. RESULTS AND DISCUSSION

The segmentation and the resulting recognition
performance of the proposed valley matching based
segmentation method has been tested on 1125 merged
images from a Kannada book. Each of these images contains
two or more characters merged together, the statistics of
which is given in Table III. The segmentation and
recognition performance are tabulated in Table IV. A
segmentation accuracy (the ratio of the number of correctly
segmented characters to the total number of characters
merged in the entire test set) of 89.6% is obtained for
matched valley based segmentation. The character
recognition rate after segmenting the merges is 83.4%
(using VPP based segmentation) and 91.2% (using matched
valley based segmentation) for this old Kannada book.

Fig. 4 compares the segmentation results using matched
valleys and VPP based methods for five sample Kannada
merged character images. It can be seen from the figure that
when the characters are slanted (i.e. italicized), VPP based
method performs poorly since the projections do not contain
minima in the merged column due to the slant. However, the
matched valley based segmentation performs well even in
such cases. Fig. 5 shows the image of a sample Kannada
text line with multiple merges and compares the recognized
Unicode texts obtained after segmentation independently by
valley matching and VPP based methods.

Figure 3. Selection of the optimal sequence of segments from a sample

merged Kannada image.

TABLE III. STATISTICS OF THE NUMBER OF MERGED IMAGES TESTED
AND THE NUMBER OF KANNADA SYMBOLS PER MERGED IMAGE

of merged components
per test image

of images tested with
merged components

2 524

3 298

>3 303

TABLE IV. SEGMENTATION AND RECOGNITION PERFORMANCE OF OUR
ALGORITHM ON 1125 MERGED IMAGES FROM AN OLD KANNADA BOOK.

Selection of
segmentation

candidates

Segmentation
accuracy (%)

Recognition rate
of segmented
characters (%)

Not carried out N/A 0

By matched valleys 89.6 91.2

By valleys in VPP 84.3 83.4

VI. CONCLUSION

We have proposed, implemented and tested a method to
generate possible segmentation paths for merged characters
based on matching top and bottom valleys formed at the
merge location. To our knowledge, this is the maiden report
of a comprehensive technique for detecting and segmenting
merged characters in Kannada, tested reasonably well on
real word images obtained from old printed books in
Kannada.

The results have been compared with those based on the
VPP based segmentation. Finally, a method to optimally
select the sequence of segments from all possible sequences
has been proposed and implemented. The results show that a
segmentation accuracy of 89.6% has been achieved by our
segmentation algorithm, compared to 84.3% using VPP
based segmentation. Similarly, improvements in character
recognition accuracy of matched valleys based model over
VPP based model show that the former performs better.

ACKNOWLEDGMENT

We thank all the research investigators of the OCR
consortium, and in particular, Prof. C V Jawahar, IIIT,
Hyderabad for defining the annotated database required for
the development of OCR technologies and their partnership.
Our thanks are also due to Sandeep Vazrapu, Sushirdeep
Narayana and Nethravathi Kulkarni for their help in
evaluating the effectiveness of the segmentation approaches
reported here on many images. We gratefully acknowledge
Shanthi Devaraj, Shanthi Raveesh and Saraswathi for
participating in the creation of the annotated databases used
in this work.

Figure 4. Comparison of sample segmentation results obtained by

matched valleys and VPP based techniques.

Figure 5. Comparison of recognized text for a sample Kannada line

image with multiple character merges, after segmentation by matched
valleys and VPP based methods.

REFERENCES

[1] Peeta Basa Pati and A G Ramakrishnan, “OCR in Indian Scripts: A
Survey,” IETE Technical Review, May-Jun 2005, 22(3):217-227.

[2] A. G. Ramakrishnan and Kaushik Mahata, “A Complete OCR for
Printed Tamil Text,” Proc. Tamil Internet 2000, Singapore, July 22-
24, 2000, pp. 165-170.

[3] K. G.Aparna and A. G. Ramakrishnan, “A complete Tamil Optical
Character Recognition System,” Proc. Fifth IAPR Workshop on
Document Analysis Systems DAS-02, Princeton, NJ, August 19-21,
2002, pp. 53-57.

[4] Tushar Patnaik, Shalu Gupta, C V Jawahar, Santanu Choudhury, A G
Ramakrishnan, “Design and Evaluation of Omnifont Tamil OCR,”
Proc. Tamil Internet 2010, Coimbatore, June 23-26, 2010, pp. 519 -
522.

[5] B. Vijay Kumar and A. G. Ramakrishnan, “Machine Recognition of
Printed Kannada Text,” Proc. Fifth IAPR Workshop on Document
Analysis Systems (DAS-02), August 19-21, 2002, Springer Verlag,
Berlin. pp. 37-48.

[6] Vijay Kumar.B and A. G. Ramakrishnan, “Radial basis function and
subspace approach for printed Kannada text recognition,” Proc. IEEE
ICASSP-04, May 17-21, 2004, Vol 5, pp. 321-324.

[7] Shiva Kumar H R and A G Ramakrishnan, “A tool that converted 200
Tamil books for use by blind students,” Proc. 12-th International
Tamil Internet Conf., Kuala Lumpur, Malaysia, Aug. 15-18, 2013.

[8] D Dhanya and A G Ramakrishnan, “Optimal feature extraction for
Bilingual OCR,” Proc. Fifth IAPR Workshop on Document Analysis
Systems (DAS-02), Princeton, NJ, August 19-21, 2002, pp.25-36.

[9] D.Dhanya and A.G.Ramakrishnan, “Simultaneous recognition of
Tamil and Roman scripts,” Proc. Tamil Internet 2001, Kuala Lumpur,
August 26-28, 2001, pp. 64-68.

[10] Deepak Arya, C V Jawahar, C Bhagvati, T Patnaik, B B Chaudhuri, G
S Lehal, S Chaudhury, A. G. Ramakrishnan, “Experiences of
integration and performance testing of multilingual OCR for printed
Indian scripts,” Proc. Joint Workshop on Multilingual OCR and
Analytics for Noisy Unstructured Text Data (MOCR AND '11). Sept.
17, 2011, Beijing, China. Article 9.

[11] R S Umesh, Peeta Basa Pati and A G Ramakrishnan, Design of a
bilingual Kannada-English OCR, in the book “Guide to OCR for
Indic Scripts: Document Recognition and Retrieval” Springer, 2009
in the Advances in Pattern Recognition Series. Ed: Venu Govindaraju
and Setlur Srirangaraj. pp. 97-124. ISBN: 978-1-84800-330-9

[12] D. Dhanya, A. G. Ramakrishnan, P. B. Pati, “Script Identification in
printed bilingual documents,” Sadhana, Feb 2002, Vol. 27, part-1,
pp.73-82.

[13] Peeta Basa Pati and A. G. Ramakrishnan, “Word Level Multi-script
Identification,” Pattern Recognition Letters, 2008, Vol. 29, pp. 1218-
1229.

[14] J. Song, Z. Li, M. R. Lyu and S. Cai, “Recognition of merged
characters based on forepart prediction, necessity-sufficiency
matching and character-adaptive masking,” IEEE Trans. Syst., Man,
Cybern. B, vol. 35, no. 1, pp. 2-11, 2005.

[15] T. Bayer, U. Krebel, and M. Hammelsbeck, “Segmenting merged
characters”, Proc. XI Intern. Conf. Pattern Recognition, vol. II. Conf.
B: Pattern Recog. Methodology and Sys, 1992.

[16] Dong-Yu Zhang, Xue-dong Tian, Xin-fu Li, "An Improved method
for segmentation of touching symbols in printed mathematical
expressions," Proc. 2nd International Conf. Adv. Comp Control
(ICACC), vol.2, pp. 251-253, 27-29 March 2010.

[17] Jin Wang, Jack Jean, “Segmentation of merged characters by neural
networks and shortest path”, Pattern recognition, Elsevier, vol. 27,
Issue 5, May 1994, pp. 649–658.

[18] Wuyi Yang, Shuwu Zhang, Haibo Zheng, Zhi Zeng, "A recognition-
based method for segmentation of Chinese characters in images and
videos," Proc. International Conf Audio, Language and Image
Processing, ICALIP 2008. pp. 723-728, 7-9 July 2008.

[19] S. Messelodi and C. M. Modena, Context driven text segmentation
and recognition, Pattern Recognition Letters, Volume 17(1), Jan
1996, Pages 47-56, ISSN 0167-8655, http://dx.doi.org/10.1016/0167-
8655(95)00098-4.

[20] N. M. Davessar, S. Madan, and Hardeep Singh, "A hybrid approach
to character segmentation of Gurmukhi script characters," Proc. 32nd
Applied Imagery Pattern Recognition Workshop, pp. 169-173, 15-17
Oct. 2003.

[21] Suresh Sundaram and A. G. Ramakrishnan, “Attention feedback
based robust segmentation of online handwritten words,” Indian
Patent Office Reference. No: 03974/CHE/2010.

[22] Suresh Sundaram and A. G. Ramakrishnan, “Attention-feedback
based robust segmentation of online handwritten isolated Tamil
words,” ACM Transactions on Asian Language Information
Processing (TALIP), Vol. 12 (1), March 2013, Article No. 4.

[23] T. C. Chang, and S. Y. Chen, “Character segmentation using convex-
hull techniques,” Int. J. Pattern Recognition and Artificial
Intelligence, vol. 13, no. 6, pp. 833-858, 1999.

[24] E. B. Lacerda and C. A. B. Mello, "Segmentation of touching
handwritten digits using self-organizing maps," Proc. 23rd IEEE
International Conf on Tools with Artificial Intelligence (ICTAI), pp.
134-137, 7-9 Nov. 2011.

[25] G. Congedo, G. Dimauro, S. Impedovo, and G. Pirlo, "Segmentation
of numeric strings," Proc. Third International Conf. Document
Analysis and Recognition, vol.2, pp. 1038-1041, 14-16 Aug 1995.

[26] B. Nethravathi, C. P. Archana, K. Shashikiran, A. G. Ramakrishnan,
V. Kumar, "Creation of a huge annotated database for Tamil and
Kannada OHR," International Conf Frontiers in Handwriting
Recognition (ICFHR), pp. 415-420, 16-18 Nov. 2010.

[27] M. Mahadeva Prasad, M. Sukumar, A. G. Ramakrishnan, “Divide and
conquer technique in online handwritten Kannada character
recognition,”ACM - Proceedings of the International Workshop on
Multilingual OCR, 2009.
.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

